L-6 Applications Of Derivatives (Worksheet Mod 1 of 3)

Do as directed.

- 1. Find the intervals in which the function f given by $f(x) = 4x^3 6x^2 72x + 30$ is
 - a) Strictly increasing

- b) strictly decreasing
- 2. Find the intervals in which the function f given by $f(x) = \sin x + 1$ $\cos x$, $0 \le x \le 2\pi$ is
 - a) Strictly increasing

- b) strictly decreasing
- 3. Show that $y = \log (1 + x) \frac{2x}{2+x}$, x > -1, is an increasing function of x throughout its domain.
- 4. Prove that $y = \frac{4\sin\theta}{(2+\cos\theta)} \theta$ is an increasing function of θ in $\left[0, \frac{\pi}{2}\right]$.
- 5. Prove that the function f is given by $f(x) = x^2 x + 1$ is neither strictly increasing nor strictly decreasing on (-1, 1).
- 6. Show that for $a \ge 1$, $f(x) = \sqrt{3}\sin x \cos x 2ax + b$ is decreasing in R.
- 7. Show that the function f defined by $f(x) = \tan^{-1}(\sin x + \cos x)$ is strictly increasing in the interval $\left(0, \frac{\pi}{4}\right)$.
- 8. Prove that the function f defined by $f(x) = \log \sin x$ is strictly increasing on $\left(0,\frac{\pi}{2}\right)$ and strictly decreasing on $\left(\frac{\pi}{2},\pi\right)$.
- 9. The interval in which $y = x^2 e^{-x}$ is increasing in
 - a) $(-\bowtie, \bowtie)$
- b) (-2,0)
- c) $(2, \bowtie)$
- d)(0, 2)
- 10.On which of the following intervals is the function f given by f(x) = $x^{100} + \sin x - 1$ is strictly decreasing.

 - a) (0, 1) b) $(\frac{\pi}{2}, \pi)$
 - c) $(0, \frac{\pi}{2})$
- d) None of these